__2017-12-16 如一模式识别研究

如一模式识别研究

OPENCV>>opencv收录

转自:http://www.cnblogs.com/tandychao/archive/2011/06/02/2068365.html

分配图像空间:

IplImage* cvCreateImage(CvSize size, int depth, int channels);

size: cvSize(width,height);

depth: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,

IPL_DEPTH_16S, IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F

channels: 1, 2, 3 or 4.

注意数据为交叉存取.彩色图像的数据编排为b0 g0 r0 b1 g1 r1 ...

举例:

// 分配一个单通道字节图像

IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

// 分配一个三通道浮点图像

IplImage* img2=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);

释放图像空间:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

cvReleaseImage(&img);

复制图像:

IplImage* img1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

IplImage* img2;

img2=cvCloneImage(img1);

设定/获取兴趣区域:

void cvSetImageROI(IplImage* image, CvRect rect);

void cvResetImageROI(IplImage* image);

vRect cvGetImageROI(const IplImage* image);

大部分OpenCV函数都支持ROI.

设定/获取兴趣通道:

void cvSetImageCOI(IplImage* image, int coi); // 0=all

int cvGetImageCOI(const IplImage* image);

大部分OpenCV函数暂不支持COI.

读取存储图像

从文件中载入图像

IplImage* img=0;

img=cvLoadImage(fileName);

if(!img) printf("Could not load image file: %s\n",fileName);

Supported image formats: BMP, DIB, JPEG, JPG, JPE, PNG, PBM, PGM, PPM,

SR, RAS, TIFF, TIF

载入图像默认转为3通道彩色图像. 如果不是,则需加flag:

img=cvLoadImage(fileName,flag);

flag: >0 载入图像转为三通道彩色图像

=0 载入图像转为单通道灰度图像

<0 不转换载入图像(通道数与图像文件相同).

图像存储为图像文件:

if(!cvSaveImage(outFileName,img)) printf("Could not save: %s\n",outFileName);

输入文件格式由文件扩展名决定.

存取图像元素

假设需要读取在i行j列像点的第k通道. 其中, 行数i的范围为[0, height-1], 列数j的范围为[0, width-1], 通道k的范围为[0, nchannels-1].

间接存取: (比较通用, 但效率低, 可读取任一类型图像数据)

对单通道字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

CvScalar s;

s=cvGet2D(img,i,j); // get the (i,j) pixel value

printf("intensity=%f\n",s.val[0]);

s.val[0]=111;

cvSet2D(img,i,j,s); // set the (i,j) pixel value

对多通道浮点或字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);

CvScalar s;

s=cvGet2D(img,i,j); // get the (i,j) pixel value

printf("B=%f, G=%f, R=%f\n",s.val[0],s.val[1],s.val[2]);

s.val[0]=111;

s.val[1]=111;

s.val[2]=111;

cvSet2D(img,i,j,s); // set the (i,j) pixel value

直接存取: (效率高, 但容易出错)

对单通道字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

((uchar *)(img->imageData + i*img->widthStep))[j]=111;

对多通道字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);

((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B

((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G

((uchar *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R

对多通道浮点图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);

((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 0]=111; // B

((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 1]=112; // G

((float *)(img->imageData + i*img->widthStep))[j*img->nChannels + 2]=113; // R

用指针直接存取 : (在某些情况下简单高效)

对单通道字节图像:

IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

int height = img->height;

int width = img->width;

int step = img->widthStep/sizeof(uchar);

uchar* data = (uchar *)img->imageData;

data[i*step+j] = 111;

对多通道字节图像:

IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);

int height = img->height;

int width = img->width;

int step = img->widthStep/sizeof(uchar);

int channels = img->nChannels;

uchar* data = (uchar *)img->imageData;

data[i*step+j*channels+k] = 111;

对单通道浮点图像(假设用4字节调整):

IplImage* img = cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);

int height = img->height;

int width = img->width;

int step = img->widthStep/sizeof(float);

int channels = img->nChannels;

float * data = (float *)img->imageData;

data[i*step+j*channels+k] = 111;

使用 c++ wrapper 进行直接存取: (简单高效)

对单/多通道字节图像,多通道浮点图像定义一个 c++ wrapper:

template class Image

{

private:

IplImage* imgp;

public:

Image(IplImage* img=0) {imgp=img;}

~Image(){imgp=0;}

void operator=(IplImage* img) {imgp=img;}

inline T* operator[](const int rowIndx) {

return ((T *)(imgp->imageData + rowIndx*imgp->widthStep));}

};

typedef struct{

unsigned char b,g,r;

} RgbPixel;

typedef struct{

float b,g,r;

} RgbPixelFloat;

typedef Image RgbImage;

typedef Image RgbImageFloat;

typedef Image BwImage;

typedef Image BwImageFloat;

单通道字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

BwImage imgA(img);

imgA[i][j] = 111;

多通道字节图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,3);

RgbImage imgA(img);

imgA[i][j].b = 111;

imgA[i][j].g = 111;

imgA[i][j].r = 111;

多通道浮点图像:

IplImage* img=cvCreateImage(cvSize(640,480),IPL_DEPTH_32F,3);

RgbImageFloat imgA(img);

imgA[i][j].b = 111;

imgA[i][j].g = 111;

imgA[i][j].r = 111;

图像转换

转为灰度或彩色字节图像:

cvConvertImage(src, dst, flags=0);

src = float/byte grayscale/color image

dst = byte grayscale/color image

flags = CV_CVTIMG_FLIP (flip vertically)

CV_CVTIMG_SWAP_RB (swap the R and B channels)

转换彩色图像为灰度图像:

使用OpenCV转换函数:

cvCvtColor(cimg,gimg,CV_BGR2GRAY); // cimg -> gimg

直接转换:

for(i=0;iheight;i++) for(j=0;jwidth;j++)

gimgA[i][j]= (uchar)(cimgA[i][j].b*0.114 +

cimgA[i][j].g*0.587 +

cimgA[i][j].r*0.299);

颜色空间转换:

cvCvtColor(src,dst,code); // src -> dst

code = CV_2

/ = RGB, BGR, GRAY, HSV, YCrCb, XYZ, Lab, Luv, HLS

e.g.: CV_BGR2GRAY, CV_BGR2HSV, CV_BGR2Lab

绘图命令

画长方体:

// 用宽度为1的红线在(100,100)与(200,200)之间画一长方体

cvRectangle(img, cvPoint(100,100), cvPoint(200,200), cvScalar(255,0,0), 1);

画圆:

// 在(100,100)处画一半径为20的圆,使用宽度为1的绿线

cvCircle(img, cvPoint(100,100), 20, cvScalar(0,255,0), 1);

画线段:

// 在(100,100)与(200,200)之间画绿色线段,宽度为1

cvLine(img, cvPoint(100,100), cvPoint(200,200), cvScalar(0,255,0), 1);

画一组线段:

CvPoint curve1[]={10,10, 10,100, 100,100, 100,10};

CvPoint curve2[]={30,30, 30,130, 130,130, 130,30, 150,10};

CvPoint* curveArr[2]={curve1, curve2};

int nCurvePts[2]={4,5};

int nCurves=2;

int isCurveClosed=1;

int lineWidth=1;

cvPolyLine(img,curveArr,nCurvePts,nCurves,isCurveClosed,cvScalar(0,255,255),lineWidth);

画内填充色的多边形:

cvFillPoly(img,curveArr,nCurvePts,nCurves,cvScalar(0,255,255));

添加文本:

CvFont font;

double hScale=1.0;

double vScale=1.0;

int lineWidth=1;

cvInitFont(&font,CV_FONT_HERSHEY_SIMPLEX|CV_FONT_ITALIC, hScale,vScale,0,lineWidth);

cvPutText (img,"My comment",cvPoint(200,400), &font, cvScalar(255,255,0));

Other possible fonts:

CV_FONT_HERSHEY_SIMPLEX, CV_FONT_HERSHEY_PLAIN,

CV_FONT_HERSHEY_DUPLEX, CV_FONT_HERSHEY_COMPLEX,

CV_FONT_HERSHEY_TRIPLEX, CV_FONT_HERSHEY_COMPLEX_SMALL,

CV_FONT_HERSHEY_SCRIPT_SIMPLEX, CV_FONT_HERSHEY_SCRIPT_COMPLEX,

来自:http://sun21.blogbus.com/logs/43758129.html

3x

评论留言区

:
  

作者: 游客 ; *
评论内容: *
带*号为必填项目

如一模式识别更新提示

matlab在图像处理方面的应用有更新

如一模式识别 友情链接

关于本站作者     chinaw3c     mozilla