__2017-12-16 如一模式识别研究

如一模式识别研究

智能算法>>图像分割代码合集

转自:http://www.cnblogs.com/muxiaoruo/p/3691481.html

Computer Vision Resources

Maintained by Jia-Bin Huang

Submit resource links here

Lastest Update: July 4, 2011

Softwares

Topic

Resources

References

Feature Extraction

SIFT [1] [Demo program][SIFT Library] [VLFeat]

PCA-SIFT [2] [Project]

Affine-SIFT [3] [Project]

SURF [4] [OpenSURF] [Matlab Wrapper]

Affine Covariant Features [5] [Oxford project]

MSER [6] [Oxford project] [VLFeat]

Geometric Blur [7] [Code]

Local Self-Similarity Descriptor [8] [Oxford implementation]

Global and Efficient Self-Similarity [9] [Code]

Histogram of Oriented Graidents [10] [INRIA Object Localization Toolkit] [OLT toolkit for Windows]

GIST [11] [Project]

Shape Context [12] [Project]

Color Descriptor [13] [Project]

Pyramids of Histograms of Oriented Gradients [Code]

Space-Time Interest Points (STIP) [14] [Code]

Boundary Preserving Dense Local Regions [15][Project]

D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]

Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]

J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences, 2009. [PDF]

H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust Features, ECCV, 2006. [PDF]

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectors. IJCV, 2005. [PDF]

J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regions. BMVC, 2002. [PDF]

A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]

E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]

T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and Detection. CVPR 2010. [PDF]

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.CVPR 2005. [PDF]

A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope, IJCV, 2001. [PDF]

S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contexts, PAMI, 2002. [PDF]

K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene Recognition, PAMI, 2010.

I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]

J. Kim and K. Grauman, Boundary Preserving Dense Local Regions, CVPR 2011. [PDF]

Image Segmentation

Normalized Cut [1] [Matlab code]

Gerg Mori' Superpixel code [2] [Matlab code]

Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

Mean-Shift Image Segmentation [4] [EDISON C++ code] [Matlab wrapper]

OWT-UCM Hierarchical Segmentation [5] [Resources]

Turbepixels [6] [Matlab code 32bit] [Matlab code 64bit] [Updated code]

Quick-Shift [7] [VLFeat]

SLIC Superpixels [8] [Project]

Segmentation by Minimum Code Length [9] [Project]

Biased Normalized Cut [10] [Project]

Segmentation Tree [11-12] [Project]

Entropy Rate Superpixel Segmentation [13] [Code]

J. Shi and J Malik, Normalized Cuts and Image Segmentation, PAMI, 2000 [PDF]

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV, 2003. [PDF]

P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation,IJCV 2004. [PDF]

D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI 2002. [PDF]

P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image Segmentation. PAMI, 2011. [PDF]

A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric Flows, PAMI 2009. [PDF]

A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode Seeking, ECCV, 2008. [PDF]

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]

A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007. [PDF]

S. Maji, N. Vishnoi and J. Malik, Biased Normalized Cut, CVPR 2011

E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,” ACCV 2009. [PDF]

N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]

M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]

Object Detection

A simple object detector with boosting [Project]

INRIA Object Detection and Localization Toolkit [1] [Project]

Discriminatively Trained Deformable Part Models [2] [Project]

Cascade Object Detection with Deformable Part Models [3] [Project]

Poselet [4] [Project]

Implicit Shape Model [5] [Project]

Viola and Jones's Face Detection [6] [Project]

N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.CVPR 2005. [PDF]

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.

Object Detection with Discriminatively Trained Part Based Models, PAMI, 2010 [PDF]

P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part Models. CVPR 2010 [PDF]

L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations, ICCV 2009 [PDF]

B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and Segmentation, IJCV, 2008. [PDF]

P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple Features, CVPR 2001. [PDF]

Saliency Detection

Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

Frequency-tuned salient region detection [2] [Project]

Saliency detection using maximum symmetric surround [3] [Project]

Attention via Information Maximization [4] [Matlab code]

Context-aware saliency detection [5] [Matlab code]

Graph-based visual saliency [6] [Matlab code]

Saliency detection: A spectral residual approach. [7] [Matlab code]

Segmenting salient objects from images and videos. [8] [Matlab code]

Saliency Using Natural statistics. [9] [Matlab code]

Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

Learning to Predict Where Humans Look [11] [Project]

Global Contrast based Salient Region Detection [12] [Project]

L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis. PAMI, 1998. [PDF]

R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]

R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]

N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005. [PDF]

S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. InCVPR, 2010. [PDF]

J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]

X. Hou and L. Zhang. Saliency detection: A spectral residual approach. CVPR, 2007. [PDF]

E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videos. CVPR, 2010. [PDF]

L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statistics. Journal of Vision, 2008. [PDF]

D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered Scenes, NIPS, 2004. [PDF]

T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans Look, ICCV, 2009. [PDF]

M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region Detection. CVPR 2011.

Image Classification

Pyramid Match [1] [Project]

Spatial Pyramid Matching [2] [Code]

Locality-constrained Linear Coding [3] [Project] [Matlab code]

Sparse Coding [4] [Project] [Matlab code]

Texture Classification [5] [Project]

Multiple Kernels for Image Classification [6] [Project]

Feature Combination [7] [Project]

SuperParsing [Code]

K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image Features, ICCV 2005. [PDF]

S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories, CVPR 2006 [PDF]

J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image Classification, CVPR, 2010 [PDF]

J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image Classification, CVPR, 2009 [PDF]

M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object Detection. ICCV, 2009. [PDF]

P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]

J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image

Parsing with Superpixels, ECCV 2010. [PDF]

Category-Independent Object Proposal

Objectness measure [1] [Code]

Parametric min-cut [2] [Project]

Object proposal [3] [Project]

B. Alexe, T. Deselaers, V. Ferrari, What is an Object?, CVPR 2010 [PDF]

J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object Segmentation, CVPR 2010. [PDF]

I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

MRF

Graph Cut [Project] [C++/Matlab Wrapper Code]

Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

Shadow Detection

Shadow Detection using Paired Region [Project]

Ground shadow detection [Project]

R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]

J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer Photographs, ECCV 2010 [PDF]

Optical Flow

Kanade-Lucas-Tomasi Feature Tracker [C Code]

Optical Flow Matlab/C++ code by Ce Liu [Project]

Horn and Schunck's method by Deqing Sun [Code]

Black and Anandan's method by Deqing Sun [Code]

Optical flow code by Deqing Sun [Matlab Code] [Project]

Large Displacement Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows] [Project]

Variational Optical Flow by Thomas Brox [Executable for 64-bit Linux] [ Executable for 32-bit Windows ] [ Matlab Mex-functions for 64-bit Linux and 32-bit Windows ] [Project]

B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]

J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]

C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral Thesis. MIT 2009. [PDF]

B.K.P. Horn and B.G. Schunck, Determining Optical Flow, Artificial Intelligence1981. [PDF]

M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]

D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, CVPR 2010. [PDF]

T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimation, PAMI, 2010 [PDF]

T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warping, ECCV 2004 [PDF]

Object Tracking

Particle filter object tracking [1] [Project]

KLT Tracker [2-3] [Project]

MILTrack [4] [Code]

Incremental Learning for Robust Visual Tracking [5] [Project]

Online Boosting Trackers [6-7] [Project]

L1 Tracking [8] [Matlab code]

P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]

B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision, IJCAI 1981. [PDF]

J. Shi, C. Tomasi, Good Feature to Track, CVPR 1994. [PDF]

B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance Learning, PAMI 2011 [PDF]

D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual Tracking, IJCV 2007 [PDF]

H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]

H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust Tracking, ECCV 2008 [PDF]

X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

Image Matting

Closed Form Matting [Code]

Spectral Matting [Project]

Learning-based Matting [Code]

A. Levin D. Lischinski and Y. Weiss. A Closed Form Solution to Natural Image Matting, PAMI 2008 [PDF]

A. Levin, A. Rav-Acha, D. Lischinski. Spectral Matting. PAMI 2008. [PDF]

Y. Zheng and C. Kambhamettu, Learning Based Digital Matting, ICCV 2009 [PDF]

Bilateral Filtering

Fast Bilateral Filter [Project]

Real-time O(1) Bilateral Filtering [Code]

SVM for Edge-Preserving Filtering [Code]

Q. Yang, K.-H. Tan and N. Ahuja, Real-time O(1) Bilateral Filtering,

CVPR 2009. [PDF]

Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering,

CVPR 2010. [PDF]

Image Denoising

K-SVD [Matlab code]

BLS-GSM [Project]

BM3D [Project]

FoE [Code]

GFoE [Code]

Non-local means [Code]

Kernel regression [Code]

Image Super-Resolution

MRF for image super-resolution [Project]

Multi-frame image super-resolution [Project]

UCSC Super-resolution [Project]

Sprarse coding super-resolution [Code]

Image Deblurring

Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

Analyzing spatially varying blur [Project]

Radon Transform [Code]

Image Quality Assessment

FSIM [1] [Project]

Degradation Model [2] [Project]

SSIM [3] [Project]

SPIQA [Code]

L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality Assessment, TIP 2011. [PDF]

N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation Model, TIP 2000. [PDF]

Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]

B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA), ICIP 2008. [PDF]

Density Estimation

Kernel Density Estimation Toolbox [Project]

Dimension Reduction

Dimensionality Reduction Toolbox [Project]

ISOMAP [Code]

LLE [Project]

Laplacian Eigenmaps [Code]

Diffusion maps [Code]

Sparse Coding

Low-Rank Matrix Completion

Nearest Neighbors matching

ANN: Approximate Nearest Neighbor Searching [Project] [Matlab wrapper]

FLANN: Fast Library for Approximate Nearest Neighbors [Project]

Steoreo

StereoMatcher [Project]

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms, IJCV 2002 [PDF]

Structure from motion

Boundler [1] [Project]

N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3D. SIGGRAPH, 2006. [PDF]

Distance Transformation

Distance Transforms of Sampled Functions [1] [Project]

P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functions. Technical report, Cornell University, 2004. [PDF]

Chamfer Matching

Fast Directional Chamfer Matching [Code]

M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer Matching, CVPR 2010 [PDF]

Clustering

K-Means [VLFeat] [Oxford code]

Spectral Clustering [UW Project][Code] [Self-Tuning code]

Affinity Propagation [Project]

Classification

SVM [Libsvm] [SVM-Light] [SVM-Struct]

Boosting

Naive Bayes

Regression

SVM

RVM

GPR

Multiple Kernel Learning (MKL)

SHOGUN [Project]

OpenKernel.org [Project]

DOGMA (online algorithms) [Project]

SimpleMKL [Project]

S. Sonnenburg, G. R?tsch, C. Sch?fer, B. Sch?lkopf . Large scale multiple kernel learning. JMLR, 2006. [PDF]

F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]

F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learning. CVPR, 2010. [PDF]

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. Simplemkl. JMRL, 2008. [PDF]

Multiple Instance Learning (MIL)

MIForests [1] [Project]

MILIS [2]

MILES [3] [Project] [Code]

DD-SVM [4] [Project]

C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized Trees, ECCV 2010. [PDF]

Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selection, PAMI 2010. [PDF]

Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance Selection. PAMI 2006 [PDF]

Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with Regions, JMLR 2004. [PDF]

Other Utilities

Code for downloading Flickr images, by James Hays [Code]

The Lightspeed Matlab Toolbox by Tom Minka [Code]

MATLAB Functions for Multiple View Geometry [Code]

Peter's Functions for Computer Vision [Code]

Statistical Pattern Recognition Toolbox [Code]

Useful Links (dataset, lectures, and other softwares)

Conference Information

Computer Image Analysis, Computer Vision Conferences

Papers

Computer vision paper on the web

NIPS Proceedings

Datasets

Compiled list of recognition datasets

Computer vision dataset from CMU

Lectures

Videolectures

Source Codes

Computer Vision Algorithm Implementations

OpenCV

Source Code Collection for Reproducible Research

源地址:http://blog.renren.com/GetEntry.do?id=757840260&owner=82447719

标签: C#图像处理

评论留言区

:
  

作者: 游客 ; *
评论内容: *
带*号为必填项目

如一模式识别更新提示

matlab在图像处理方面的应用有更新

如一模式识别 友情链接

关于本站作者     chinaw3c     mozilla