__2017-12-16 如一模式识别研究

如一模式识别研究

vc++>>常用blas函数

常用 blas 函数

复制代码

Y=alpha * X +beta*Y 

复制代码
template <>
void caffe_cpu_axpby<float>(const int N, const float alpha, const float* X,
const float beta, float* Y) {
cblas_saxpby(N, alpha, X,
1, beta, Y, 1);
}

template
<>
void caffe_cpu_axpby<double>(const int N, const double alpha, const double* X,
const double beta, double* Y) {
cblas_daxpby(N, alpha, X,
1, beta, Y, 1);
}
复制代码
 

cblas_dscal(N, beta, Y, incY);  Y=Y*beta 
cblas_daxpy(N, alpha, X, incX, Y, incY);  Y= (alpha * X) + Y)

复制代码

 

Y=alpha * X + Y 

复制代码
template <>
void caffe_axpy<float>(const int N, const float alpha, const float* X,
float* Y) { cblas_saxpy(N, alpha, X, 1, Y, 1); }

template
<>
void caffe_axpy<double>(const int N, const double alpha, const double* X,
double* Y) { cblas_daxpy(N, alpha, X, 1, Y, 1); }
复制代码
复制代码
DEFINE_VSL_BINARY_FUNC(Add, y[i] = a[i] + b[i]);
DEFINE_VSL_BINARY_FUNC(Sub, y[i]
= a[i] - b[i]);
DEFINE_VSL_BINARY_FUNC(Mul, y[i]
= a[i] * b[i]);
DEFINE_VSL_BINARY_FUNC(Div, y[i]
= a[i] / b[i]);


template
<>
void caffe_add<float>(const int n, const float* a, const float* b,
float* y) {
vsAdd(n, a, b, y);
}

template
<>
void caffe_add<double>(const int n, const double* a, const double* b,
double* y) {
vdAdd(n, a, b, y);
}
复制代码

 

y=x;

复制代码
template <>
void caffe_copy<float>(const int N, const float* X, float* Y) {
cblas_scopy(N, X,
1, Y, 1);
}

template
<>
void caffe_copy<double>(const int N, const double* X, double* Y) {
cblas_dcopy(N, X,
1, Y, 1);
}

template
<>
void caffe_gpu_copy<float>(const int N, const float* X, float* Y) {
CUBLAS_CHECK(cublasScopy(Caffe::cublas_handle(), N, X,
1, Y, 1));
}

template
<>
void caffe_gpu_copy<double>(const int N, const double* X, double* Y) {
CUBLAS_CHECK(cublasDcopy(Caffe::cublas_handle(), N, X,
1, Y, 1));
}
复制代码

 

Computes alpha*x*y' + A.

复制代码
cblas_sger
Multiplies vector X by the transform of vector Y, then adds matrix A (single precison).

Multiplies vector X by the transform of vector Y, then adds matrix A (single precison).
void cblas_sger (
const enum CBLAS_ORDER Order,
const int M,
const int N,
const float alpha,
const float *X,
const int incX,
const float *Y,
const int incY,
float *A,
const int lda
);

复制代码
复制代码

Y(vetor)←αAX + βY

This function multiplies A * X (after transposing A, if needed) and multiplies the resulting matrix by alpha.
It then multiplies vector Y by beta. It stores the sum of these two products in vector Y.

template <>
void caffe_cpu_gemv<float>(const CBLAS_TRANSPOSE TransA, const int M,
const int N, const float alpha, const float* A, const float* x,
const float beta, float* y) {
cblas_sgemv(CblasRowMajor, TransA, M, N, alpha, A, N, x,
1, beta, y, 1);
}
复制代码

 

C(matrix)←αAB + βC

复制代码
复制代码
template<typename T>
void gpu_multmat(T* A, T* B, T* C, int M,int K,int N){
const T alpha = 1,beta=0;
caffe_gpu_gemm(CblasNoTrans,CblasNoTrans,M,N,K,alpha,A,B,beta,C);
}
复制代码
template<>
void caffe_cpu_gemm<float>(const CBLAS_TRANSPOSE TransA,
const CBLAS_TRANSPOSE TransB, const int M, const int N, const int K,
const float alpha, const float* A, const float* B, const float beta,
float* C) {
int lda = (TransA == CblasNoTrans) ? K : M;
int ldb = (TransB == CblasNoTrans) ? N : K;
cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B,
ldb, beta, C, N);
}
复制代码

 

复制代码
A=M*N  B=M*K
C=A'*B N M K

template<typename T>
void cpu_multTmat(T* A, T* B, T* C, int M,int K,int N){
const T alpha = 1,beta=0;
caffe_cpu_gemm(CblasTrans,CblasNoTrans,M,N,K,alpha,A,B,beta,C);
// cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, alpha, A, M, B, K, beta, C, M);
}
A=M*N B=N*K
C=A*B   M N K


template
<typename T>
void cpu_multmat(T* A, T* B, T* C, int M,int K,int N){
const T alpha = 1,beta=0;
caffe_cpu_gemm(CblasNoTrans,CblasNoTrans,M,N,K,alpha,A,B,beta,C);
// cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, K, alpha, A, M, B, K, beta, C, M);
}

评论留言区

:
  

作者: 游客 ; *
评论内容: *
带*号为必填项目

如一模式识别更新提示

matlab在图像处理方面的应用有更新

如一模式识别 友情链接

关于本站作者     chinaw3c     mozilla